Machine Learning
Machine Learning es una disciplina científica del ámbito de la Inteligencia Artificial que crea sistemas que aprenden automáticamente. Aprender en este contexto quiere decir identificar patrones complejos en millones de datos. La máquina que realmente aprende es un algoritmo que revisa los datos y es capaz de predecir comportamientos futuros. Automáticamente, también en este contexto, implica que estos sistemas se mejoran de forma autónoma con el tiempo, sin intervención humana.
Una empresa de telefonía quiere saber qué clientes están en “peligro” de darse de baja de sus servicios para hacer acciones comerciales que eviten que se vayan a la competencia. ¿Cómo puede hacerlo? La empresa tiene muchos datos de los clientes, muchísimos: antigüedad, planes contratados, consumo diario, llamadas mensuales al servicio de atención al cliente, últimos cambios de planes contratados… pero seguramente los usa solo para facturar y para hacer estadísticas. ¿Qué más puede hacer con esos datos? Se pueden usar para predecir cuándo un cliente se va a dar de baja y gestionar la mejor acción que lo evite. En pocas palabras, con Machine Learning se puede pasar de ser reactivos a ser proactivos. Los datos históricos del conjunto de los clientes, debidamente organizados y tratados en bloque, generan una base de datos que se puede explotar para predecir futuros comportamientos, favorecer aquellos que mejoran los objetivos de negocio y evitar aquellos que son perjudiciales.
Esa cantidad ingente de datos son imposibles de analizar por una persona para sacar conclusiones y menos todavía para hacer predicciones. Los algoritmos en cambio sí pueden detectar patrones de comportamiento contando con las variables que le proporcionamos y descubrir cuáles son las que han llevado, en este caso, a darse de baja como cliente. La siguiente imagen es un ejemplo de una predicción simplificada basada en datos de una compañía de telefonía ficticia, pero usando una herramienta de Machine Learning real.
Una empresa de telefonía quiere saber qué clientes están en “peligro” de darse de baja de sus servicios para hacer acciones comerciales que eviten que se vayan a la competencia. ¿Cómo puede hacerlo? La empresa tiene muchos datos de los clientes, muchísimos: antigüedad, planes contratados, consumo diario, llamadas mensuales al servicio de atención al cliente, últimos cambios de planes contratados… pero seguramente los usa solo para facturar y para hacer estadísticas. ¿Qué más puede hacer con esos datos? Se pueden usar para predecir cuándo un cliente se va a dar de baja y gestionar la mejor acción que lo evite. En pocas palabras, con Machine Learning se puede pasar de ser reactivos a ser proactivos. Los datos históricos del conjunto de los clientes, debidamente organizados y tratados en bloque, generan una base de datos que se puede explotar para predecir futuros comportamientos, favorecer aquellos que mejoran los objetivos de negocio y evitar aquellos que son perjudiciales.
Esa cantidad ingente de datos son imposibles de analizar por una persona para sacar conclusiones y menos todavía para hacer predicciones. Los algoritmos en cambio sí pueden detectar patrones de comportamiento contando con las variables que le proporcionamos y descubrir cuáles son las que han llevado, en este caso, a darse de baja como cliente. La siguiente imagen es un ejemplo de una predicción simplificada basada en datos de una compañía de telefonía ficticia, pero usando una herramienta de Machine Learning real.
Comentarios
Publicar un comentario